
International Journal of Theoretical Physics, Vol. 31, No. 10, 1992 

Quantum Logics and Completeness Criteria of Inner 
Product Spaces 
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We present the survey of measure-theoretic completeness criteria for inner pro- 
duct spaces using methods and notions important for quantum logics. Moreover, 
some new criteria and open problems are given. 

1. INTRODUCTION 

Let S be a real or complex inner product  space with an inner product 
( . ,  �9 ). We recall that for M _  S, M r ~ ,  by M • we mean the set of  all x e S 
such that (x, y) = 0 for each y ~ M .  We introduce the following eight families 
of  closed subspaces that show quite different properties from the ordering 
point of  view: 

1. W(S)  is the set of  all closed subspaces of S which is a weakly ortho- 
complemented, complete lattice for which M y  M • --S, or M = M  "• does 
not  hold in general. 

2. F(S)  is the set of  all orthogonally dosed subspaces of  S, i.e., of  all 
subspaces M of  S such that M = M  •177 which is an orthocomplemented 
complete lattice (not necessarily orthomodular).  

3. D(S)  is the set of  all Foulis-Randall  subspaces of  S, i.e., of  all 
subspaces M for which there exists an orthonormal system (ONS, for short) 
{ui} such that M =  {ui} •177 which is a complete orthoposet. Any M of  D(S)  
possesses at least one local complement M' ,  i.e., such an element M ' E D ( S )  
for which M '  _L M and M v M '  = S. 
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4. R(S) is the set of all subspaces M of S such that M =  {ui} l• for all 
maximal orthonormal systems (MONS, for short) {ui} of M, which is a 
poset. 

5. V(S) is the set of all subspaces M of S such that M =  {u;} •177 and 
n • {v:} •177 for every MONS {u;} and {v:} of M and M • respectively, 
which is an orthocomplemented poset. 

6. E(S) is the set of all subspaces of S for which the condition 
M +  M • = S holds, which is an orthomodular poset, and which is not neces- 
sarily a cr-poset. 

Finally, we introduce: 

7. C(S) is the set of all subspaces of S of finite or cofinite dimension, 
which is an orthocomplemented, orthomodular lattice. 

8. P(S) is the set of all subspaces of S of finite dimension. 

It is easy to see that 

P(S)~_C(S)~_E(S)~_ V(S)~_R(S)~_D(S)~_F(S)~_ W(S) (1) 

It is well known that S is complete iff E ( S ) =  W(S), or l i f E ( S ) = F ( S ) ,  
or iff F(S)= W(S), and for an incomplete S proper inclusions in (1) are 
possible. All the above families play a considerable role in the axiomatic 
model of quantum mechanics (see, for example, Sherstnev, 1974). For quan- 
tum logic theory, among the most important notions are a measure or a 
charge (=signed measure) and a quantum logic. Hence, it is extremely impor- 
tant to find conditions on the above families to be quantum logics, and 
charges that characterize Hilbert spaces among inner product spaces. 

A mapping m from K(S), where Kis  the capital from the set {C, E, V, 
R, D, F, W}, into the real line R such that 

i ~ I  

and for K = W we add the condition 

m(M v M • =re(S),  M e  W(S) (3) 

whenever {Mi: i s l }  is a system of mutually orthogonal subspaces of K(S) 
for which the join @i~xM~ exists in K(S), is said to be a charge, signed 
measure, or completely additive signed measure if (2) holds for any finite, 
countable, or arbitrary index set L If m attains only positive values, we say 
that m is a finitely additive measure, measure, or completely additive measure, 
respectively, according tO the cardinality of L A finitely additive measure m 
such that m(S) = 1 is said to be a state. A charge is said to be Jordan if it 
can be represented as a difference of two positive, finitely additive measures. 
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If H is a Hilbert space over S, i.e., H=A', Sherstnev's (1974) gen- 
eralization of the famous Gleason (1957) theorem (see also Drisch, 1979; 
Dvure~enskij, 1988, 1989a) says that for any bounded signed measure m on 
the set of all closed subspaces of H, L(H), of a separable Hilbert space 
H, dim H:~2, there exists a unique Hermitian operator T of trace class on 
H such that 

m(M) = tr(TPM), MeL(H) (4) 

where pM is the orthoprojector from H onto M. Moreover, any Hermitian 
operator T of trace class on H generates a Jordan (bounded), completely 
additive signed measure m on L(H) for any H. 

Measure-theoretic criteria of the completeness of inner product spaces 
shall be divided into three groups: ones using (1) completely additive signed 
measures; (2) signed measures, and (3) charges, respectively. 

2. COMPLETELY ADDITIVE SIGNED MEASURE CRITERIA 

Theorem 1. An inner product space S is complete iff K(S), where 
K~ { C, E, V, R, D, F, W}, possesses at least one nonzero completely additive 
signed measure. 

Hamhalter and Ptfik (1987) showed that a separable inner product 
space S is complete iff F(S) possesses at least one probability measure. This 
result has been generalized to E(S), F(S), and other families of subspaces 
for a general S, as well as to signed measures and finitely additive measures 
in series of papers (Dvure~enskij, 1989a; Dvure~enskij and Migik, 1988; 
Dvure~enskij and Pulmannov~t, 1988, 1989; Dvure~enskij and Neubrunn, 
1990, 1992). 

A mapping f :  Se(S) = {xsS: Ilxll = 1} ~ ( - ~ ,  ~ )  such that there is a 
constant W called the weight of f for which we have 

f(x,) = W (5) 
i 

for any MONS {x;} in S is said to be a flame function. Frame functions are 
in a one-to-one correspondence with completely additive signed measures 
on K(S). 

Theorem 2 (Dvurefienskij, 1989b). An inner product space S is complete 
iff S possesses at least one nonzero frame function. 

Gudder (1974, 1975) and Gudder and Holland (1975) proved that S is 
complete iff any MONS of S is an ONB of S, i.e., 

VxeS, V MONS{x,} of S, x=~ (x,, x)x~ 
i 
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This result can be considerably improved by Theorem 2: 

30~xsS(S)  V MONS{x;} of S, x = ~  (x~, x)xi 
i 

if we put f ( u ) =  I(u, x)l 2 for any us6e(S). 

3. SIGNED MEASURE COMPLETENESS CRITERIA 

A cardinal I is said to be nonmeasurable if on the power set 2 r there 
does not exist any probability measure vanishing on all one-point subsets 
of L 

Theorem 3 (Dvure~enskij, 1989a,b). An inner product space S is com- 
plete iff K(S), if Ks  {D, F, W} and the dimension of S is a nonmeasurable 
cardinal, possesses at least one nonzero signed measure. 

Theorem 4. S is complete i f fF(S) or W(S) possesses at least one signed 
measure nonvanishing on P(S). 

Problem 1. Is S complete if the dimension of S is a nonmeasurable 
cardinal >S0 and E(S) possesses at least one nonzero signed measure? 

Problem 2. Is S complete if any splitting subspace M of S, dim S = N0, 
is complete? 

Now we present a new criterion, and for that, according to Cattaneo et 
al. (1987), we introduce the following notions. An ONS {u,} of S is Dicey iff 
{ut} ~- {x} • u {y}• implies x _[_y for x, yeS. It can be shown that ONS{ut} is 
Dicey iff {ut} = {ut,} w {u,j} and {ut,} c~ {utj} = ~ ,  then {ut~} i• {u,j} • 

Every Dacey ONS is a MONS. On the other hand, it is possible to find 
a MONS (Cattaneo and Marino, 1986) which is not Dacey. We say that an 
inner product space S is Dacey iff any MONS of S is Dicey. From Cattaneo 
et al. (1987) we have that S is Dacey iff V(S)=D(S). 

Theorem 5. A Dicey inner product space S is complete iff K(S), where 
Ks  { V, R, D}, possesses at least one signed measure nonvanishing on P(S). 

Proof. We know that S is Dacey iff D(S)= V(S). Hence, D(S)= 
R(S) = V(S). Suppose that D(S) possesses at least one signed measure. Let 
{xt} be a countable ONS of S and put M= {xi} •177 Then MsD(S), and for 
any MONS{yi} of M we have, according to the basic property of  R(S), that 
{ y~} •177 = M. Without loss of  generality we may assume that m(sp(e)) # 0 for 
at least one esM. Hence, f ,  where f(x)=m(sp(x)), xsAa(M), is a non- 
zero frame function on M with the weight m(M). Using the criterion in 
DvureSenskij (1989b), we conclude that M is complete and MsE(S), so that 
S is complete. QED 
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4. CHARGE CRITERIA 

A charge m on F(S) is said to be P(S)-regular if for each MeF(S) 
and each e > 0 there exists a finite-dimensional subspace N of M such that 
Im(Mn N• < e. Let Tbe a Hermitian trace operator on $'; then a mapping 
mT on E(S) defined via 

mr(M) = tr(TP~),  MEE(S) (6) 

is a P(S)-regular Jordan charge. In particular, if for any unit vector x of S 
we put 

mx(M) = [JxM[I 2, M~E(S) 

if 

X = X M ~ - X M  • , X M e M ,  X M I e M  • 

we obtain a system of P(S)-regular states on E(S), {mx: xeSP(S)}, which 
determines, e.g., the ordering on E(S). 

Theorem 6. Any Jordan charge m on S, dim S ~ 2 ,  can be uniquely 
expressed as a sum m=ml +m2, where m~ is a P(S)-regular Jordan charge 
and m2 is a Jordan charge vanishing on P(S). A Jordan charge m is P(S)- 
regular iff m is of the form (6) for some Hermitian trace operator T on ,q. 

This result has a close connection with the decomposition of measures 
on quantum logics (Riittimann, 1990). 

We recall that a charge m is strongly P(S)-regular if, for every sequence 
{ Q,}, of mutually orthogonal elements of K(S) such that Q= t~ ,  Q, exists 
in K(S), there is a system of  mutually compatible elements :~cP(S) [i.e., 
:~ is a subset contained in a Boolean subalgebra of K(S)] such that, for each 
E>0 and every RE{Q, QI l ,  Ql2,...) there exists a Pe :~  with P~R and 
]m(R n P• < e. The strong P(S)-regularity implies the P(S)-regularity, but 
the converse is not true, in general. 

Theorem 7 (Dvure~enskij et aL, 1990; Dvure~enskij, 1990b). If  dim S = 
No, S is complete iff K(S), if Ke {E, V, R),  possesses at least one nonzero, 
strongly P(S)-regular, finitely additive measure. 

Problem 3. Does the strong P(S)-regularity of a nonzero Jordan charge 
on E(S), dim S =  No, imply the completeness of S? 

Theorem 8 (Dvure~enskij, n.d.). S is complete iff F(S) or W(S) 
possesses at least one nonzero P(S)-regular Jordan charge. 

We say that a subspace M0 of S, MocK(S), where Ke{F, W}, is a 
support of a finitely additive state m on K(S) if M(N) =0 iff N_l_ M0. If  m 
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has a support, then it is unique. The support of m is P(S)-regular (with 
respect to m) if given e > 0 there is a finite-dimensional subspace M of 
M0 such that m(Mo n M 1) < e. For example, this is true if Mo is of finite 
dimension. 

Theorem 9. S is complete iff K(S), where KE {F, W}, possesses at least 
one finitely additive state with P(S)-regular support. Moreover, this state is 
a completely additive state. 

Proof According to Dvure~enskij (1991), m is expressible in the form 
m(M) = tr(TP M) + m2(M), MEF(S), where Tis a positive Hermitian opera- 
tor of trace class on S, and m2 is a positive function vanishing on P(S). 
Due to our assumptions, there is a sequence of nondecreasing subspaces 
of the support M0, {M,}, such that m(Mo)=limnm(M,). Therefore, 
m(M~) = 0 = m2(M~) and 

tr(TP ~o) + mE(Mo) = m(Mo) = lim m(M~) 
n 

= lira tr( TP ~) + lim m(M~) = lira tr( TP ~") 
n ~1 FI 

which gives 

m(M) = tr(TP ~a) for any MEF(S) 

In other words, m is a P(S)-regular state, so that, in view of the previous 
theorem, S is complete, and m is completely additive. 

For K =  W we proceed in an analogous way to that in the previous 
paragraph. QED 

Problem 4. Is the set of all (bounded) nonzero charges on K(S), where 
Ke { 1I, R, D, F, W} for incomplete S, nonempty? What is its connection to 
the completeness of S? 

Problem 5. If  KE{D,F, W}, dim S~2 ,  then (Dvure~enskij, 1990a) 
K(S) does not possess any two-valued state. Is this true for K~ {E, II, R}? 

Problem 6. Can any Jordan charge vanishing on P(S) be extended to 
a Jordan charge on L ( ~ ?  

The notion of a finitely additive measure can be extended in a conven- 
tional way to a measure attaining the values +oo, too. A finitely additive 
measure m on E(S) is said to be P(S)oo-regular if, given MEE(S), there is 
a nondecreasing sequence of finite-dimensional subspaces of M, {Mn}, such 
that m(M) = lim, m(M,). For finite, finitely additive measures, P(S)-regular- 
ity and P(S)oo-regularity coincide. 

Dvure~enskij (1992) describes the set of all P(S)oo-regular, finitely 
additive measures (which are, for example, o--finite, i.e., m is o--finite if there 
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is a countable, orthogonal decomposition {Mn} of splitting subspaces of S 
such that O~=l Mn = S and m(Mn)< oo for any n) for the case that S is 
complete and dim S # 2. 

Problem 7. Describe the set of all (o--finite) P(S)oo-regular, finitely addi- 
tive measures on E(S) for incomplete S. 

We review the following completeness criteria. 

Theorem 10. Let S be an inner product space. The following statements 
are equivalent: 

1. S is complete. 
2. E (S )=  W(S) (Gudder, 1974). 
3. F (S)=  W(S) (Gudder, 1974). 
4. If M is a proper closed subspaces of S, then M• 

(Gudder, 1974). 
5. I f f  is a continuous linear functional on S, there exists yeS  such 

that f ( x ) =  (x, y) for all x~S (Gudder, 1974). 
6. Every MONS in S is an ONB in S (Gudder and Holland, 1975). 
7. F(S) is orthomodular (Amemiya and Araki, 1966/1967). 
8. E(S)=F(S). 
9. E(S) is a complete lattice (Gross and Keller, 1977). 

10. E(S) is a o--lattice (Cattaneo and Marino, 1986). 
11. E(S) is a o--orthoposet (=quantum logic) (Dvure~enskij, 1988). 
12. E(S) possesses the join of any sequence of mutually orthogonal 

one-dimensional subspaces of S (Dvure~enskij, 1988). 
13. R(S)=F(S) (Cattaneo et al., 1987). 
14. D(S)=E(S) (Canetti and Marino, 1988). 
15. K(S), if K~{C, E, V, R, D, F, W}, possesses at least one nonzero, 

completely additive signed measure (Dvure~enskij and Pulmannov& 
1988, 1989). 

16. S possesses at least one nonzero frame function (Dvure~enskij, 
1989b, 1990a). 

17. There exists a unit vector y~s such that Y=Y.I (Y, xi)x~ for any 
MONS {x;} in S (Dvure6enskij, 1989b, 1990a). 

18. F(S) [W(S)] possesses at least one Jordan P(S)-regular, nonzero 
charge (Dvure~enskij, n.d.). 

19. K(S), where K~{E, V, R} and the dimension of S is a countable 
cardinal, possesses at least one nontrivial, strongly P(S)-regular, finitely 
additive measure (Dvurefienskij et al., 1990; Dvure~enskij, 1990b). 

20. D(S), if S has dimension a nonmeasurable cardinal, possesses 
at least one nonzero, strongly P(S)-regular, finitely additive measure 
(Dvure~enskij et al., 1990). 
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21. K(S), where Ks {D, F, W} and the dimension of S is a nonmeasur- 
able cardinal, possesses at least one o'-additive, nontrivial signed measure 
(Dvure~enskij, 1989a, 1990a). 

22. K(S), where Ks {F, W}, possesses at least one signed measure non- 
vanishing on P(S) (Dvure~enskij, n.d.). 

23. K(S), where Ks{F, W} and S is Dacey, possesses at least one 
signed measure nonvanishing on P(S) (Theorem 5). 

24. K(S), where Ks {F, W}, possesses at least one finitely additive state 
with a finite-dimensional support (Dvure~enskij, 1991). 

25. K(S), where Ks {F, W}, possesses at least one finitely additive state 
with a P(S)-regular support (Theorem 9). 
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