Quantum Logics and Completeness Criteria of Inner Product Spaces

Anatolii Dvurečenskij^{1,2}

Received February 11, 1992

We present the survey of measure-theoretic completeness criteria for inner product spaces using methods and notions important for quantum logics. Moreover, some new criteria and open problems are given.

1. INTRODUCTION

Let S be a real or complex inner product space with an inner product (\cdot, \cdot) . We recall that for $M \subseteq S$, $M \neq \emptyset$, by M^{\perp} we mean the set of all $x \in S$ such that $(x, y) = 0$ for each $y \in M$. We introduce the following eight families of closed subspaces that show quite different properties from the ordering point of view:

1. W(S) is the set of all closed subspaces of S which is a weakly orthocomplemented, complete lattice for which $M \vee M^{\perp} = S$, or $M = M^{\perp \perp}$, does not hold in general.

2. F(S) is the set of all orthogonally dosed subspaces of S, i.e., of all subspaces M of S such that $M = M^{\perp\perp}$, which is an orthocomplemented complete lattice (not necessarily orthomodular).

3. D(S) is the set of all Foulis-Randall subspaces of S, i.e., of all subspaces M for which there exists an orthonormal system (ONS, for short) ${u_i}$ such that $M = {u_i}^{\perp}$, which is a complete orthoposet. Any M of $D(S)$ possesses at least one local complement M' , i.e., such an element $M' \in D(S)$ for which $M' \perp M$ and $M \vee M' = S$.

1899

¹Institute for Theoretical Physics, University of Cologne, D-5000 Cologne 41, Germany. 2Permanent address: Mathematical Institute, SIovak Academy of Sciences, CS-814 73 Bratislava, Czecho-Slovakia.

1900 **Dvurečenskij**

4. $R(S)$ is the set of all subspaces M of S such that $M = \{u_i\}^{\perp \perp}$ for all maximal orthonormal systems (MONS, for short) $\{u_i\}$ of M, which is a poset.

5. $V(S)$ *is the set of all subspaces M of S such that* $M = \{u_i\}^{\perp}$ *and* $M^{\perp} = \{v_i\}^{\perp \perp}$ for every MONS $\{u_i\}$ and $\{v_i\}$ of M and M^{\perp} , respectively, which is an orthocomplemented poset.

6. E(S) is the set of all subspaces of S for which the condition $M + M^{\perp} = S$ holds, which is an orthomodular poset, and which is not necessarily a σ -poset.

Finally, we introduce:

7. $C(S)$ is the set of all subspaces of S of finite or cofinite dimension, which is an orthocomplemented, orthomodular lattice.

8. P(S) is the set of all subspaces of S of finite dimension.

It is easy to see that

$$
P(S) \subseteq C(S) \subseteq E(S) \subseteq V(S) \subseteq R(S) \subseteq D(S) \subseteq F(S) \subseteq W(S) \tag{1}
$$

It is well known that S is complete iff $E(S) = W(S)$, or iff $E(S) = F(S)$, or iff $F(S) = W(S)$, and for an incomplete S proper inclusions in (1) are possible. All the above families play a considerable role in the axiomatic model of quantum mechanics (see, for example, Sherstnev, 1974). For quantum logic theory, among the most important notions are a measure or a charge (=signed measure) and a quantum logic. Hence, it is extremely important to find conditions on the above families to be quantum logics, and charges that characterize Hilbert spaces among inner product spaces.

A mapping *m* from $K(S)$, where K is the capital from the set $\{C, E, V, \}$ R, D, F, W , into the real line R such that

$$
m\left(\bigoplus_{i\in I}M_i\right)=\sum_{i\in I}m(M_i)
$$
 (2)

and for $K = W$ we add the condition

$$
m(M \vee M^{\perp}) = m(S), \qquad M \in W(S) \tag{3}
$$

whenever $\{M_i: i \in I\}$ is a system of mutually orthogonal subspaces of $K(S)$ for which the join $\bigoplus_{i\in I} M_i$ exists in $K(S)$, is said to be a *charge*, *signed measure,* or *completely additive signed measure* if (2) holds for any finite, countable, or arbitrary index set I . If m attains only positive values, we say that m is *a finitely additive measure, measure,* or *completely additive measure,* respectively, according to the cardinality of I . A finitely additive measure m such that $m(S) = 1$ is said to be a *state*. A charge is said to be *Jordan* if it can be represented as a difference of two positive, finitely additive measures.

Completeness Criteria of Inner Product Spaces 1901

If H is a Hilbert space over S, i.e., $H = \overline{S}$, Sherstnev's (1974) generalization of the famous Gleason (1957) theorem (see also Drisch, 1979; Dvurečenskij, 1988, 1989a) says that for any bounded signed measure m on the set of all closed subspaces of $H, L(H)$, of a separable Hilbert space H, dim $H\neq 2$, there exists a unique Hermitian operator T of trace class on H such that

$$
m(M) = \text{tr}(TP^M), \qquad M \in L(H) \tag{4}
$$

where P^M is the orthoprojector from H onto M. Moreover, any Hermitian operator T of trace class on H generates a Jordan (bounded), completely additive signed measure m on *L(H)* for any H.

Measure-theoretic criteria of the completeness of inner product spaces shall be divided into three groups: ones using (1) completely additive signed measures; (2) signed measures, and (3) charges, respectively.

2. COMPLETELY ADDITIVE SIGNED MEASURE CRITERIA

Theorem 1. An inner product space S is complete iff *K(S),* where $K \in \{C, E, V, R, D, F, W\}$, possesses at least one nonzero completely additive signed measure.

Hamhalter and Pták (1987) showed that a separable inner product space S is complete iff *F(S)* possesses at least one probability measure. This result has been generalized to *E(S), F(S),* and other families of subspaces for a general S, as well as to signed measures and finitely additive measures in series of papers (Dvurečenskij, 1989a; Dvurečenskij and Mišík, 1988; Dvurečenskij and Pulmannová, 1988, 1989; Dvurečenskij and Neubrunn, 1990, 1992).

A mapping $f: \mathcal{S}(S) = \{x \in S: ||x|| = 1\} \rightarrow (-\infty, \infty)$ such that there is a constant W called the weight of f for which we have

$$
\sum_{i} f(x_i) = W \tag{5}
$$

for any MONS $\{x_i\}$ in S is said to be a frame function. Frame functions are in a one-to-one correspondence with completely additive signed measures on $K(S)$.

Theorem 2 (Dvurečenskij, 1989b). An inner product space S is complete iff S possesses at least one nonzero frame function.

Gudder (1974, 1975) and Gudder and Holland (1975) proved that S is complete iff any MONS of S is an ONB of S , i.e.,

$$
\forall x \in S, \quad \forall \text{MONS}\{x_i\} \text{ of } S, \qquad x = \sum_i (x_i, x) x_i
$$

This result can be considerably improved by Theorem **2:**

$$
\exists 0 \neq x \in S(\bar{S}) \quad \forall \text{ MONS}\{x_i\} \text{ of } S, \qquad x = \sum_i (x_i, x) x_i
$$

if we put $f(u) = |(u, x)|^2$ for any $u \in \mathcal{S}(S)$.

3. SIGNED MEASURE COMPLETENESS CRITERIA

A cardinal I is said to be nonmeasurable if on the power set 2^T there does not exist any probability measure vanishing on all one-point subsets of L

*Theorem 3 (Dvurečenskij, 1989a,b). An inner product space S is com*plete iff $K(S)$, if $K \in \{D, F, W\}$ and the dimension of S is a nonmeasurable cardinal, possesses at least one nonzero signed measure.

Theorem 4. S is complete iff $F(S)$ or $W(S)$ possesses at least one signed measure nonvanishing on *P(S).*

Problem 1. Is S complete if the dimension of S is a nonmeasurable cardinal \geq ⁸₀ and $E(S)$ possesses at least one nonzero signed measure?

Problem 2. Is S complete if any splitting subspace M of S, dim $S = N_0$, is complete?

Now we present a new criterion, and for that, according to Cattaneo *et al.* (1987), we introduce the following notions. An ONS $\{u_i\}$ of S is Dacey iff ${u_i} \subseteq {x}^{\perp} \cup {y}^{\perp}$ implies $x \perp y$ for $x, y \in S$. It can be shown that ONS{u_t} is Dacey iff ${u_i} = {u_{i_i}} \cup {u_{i_i}}$ and ${u_{i_i}} \cap {u_{i_i}} = \emptyset$, then ${u_{i_i}}^{1 \perp} = {u_{i_i}}^1$.

Every Dacey ONS is a MONS. On the other hand, it is possible to find a MONS (Cattaneo and Marino, 1986) which is not Dacey. We say that an inner product space S is Dacey iff any MONS of S is Dacey. From Cattaneo *et al.* (1987) we have that S is Dacey iff $V(S) = D(S)$.

Theorem 5. A Dacey inner product space S is complete iff $K(S)$, where $K \in \{V, R, D\}$, possesses at least one signed measure nonvanishing on $P(S)$.

Proof. We know that S is Dacey iff $D(S) = V(S)$. Hence, $D(S) =$ $R(S) = V(S)$. Suppose that $D(S)$ possesses at least one signed measure. Let ${x_i}$ be a countable ONS of S and put $M = {x_i}^{1 \perp}$. Then $M \in D(S)$, and for any MONS $\{y_i\}$ of M we have, according to the basic property of $R(S)$, that $\{y_i\}^{\perp \perp} = M$. Without loss of generality we may assume that $m(\text{sp}(e)) \neq 0$ for at least one $e \in M$. Hence, f, where $f(x) = m(\text{sp}(x))$, $x \in \mathcal{S}(M)$, is a nonzero frame function on M with the weight $m(M)$. Using the criterion in Dvurečenskij (1989b), we conclude that M is complete and $M \in E(S)$, so that S is complete. OED

4. CHARGE CRITERIA

A charge *m* on $F(S)$ is said to be $P(S)$ -regular if for each $M \in F(S)$ and each $\varepsilon > 0$ there exists a finite-dimensional subspace N of M such that $|m(M \cap N^{\perp})|$ < s. Let T be a Hermitian trace operator on \overline{S} ; then a mapping m_{τ} on $E(S)$ defined via

$$
m_T(M) = \text{tr}(TP^M), \qquad M \in E(S) \tag{6}
$$

is a $P(S)$ -regular Jordan charge. In particular, if for any unit vector x of S we put

$$
m_x(M) = ||x_M||^2, \qquad M \in E(S)
$$

if

$$
x = x_M + x_{M^{\perp}}, \qquad x_M \in M, \quad x_M \in M^{\perp}
$$

we obtain a system of $P(S)$ -regular states on $E(S)$, $\{m_x: x \in \mathcal{S}(S)\}\)$, which determines, e.g., the ordering on *E(S).*

Theorem 6. Any Jordan charge *m* on *S*, dim $S \neq 2$, can be uniquely expressed as a sum $m=m_1+m_2$, where m_1 is a $P(S)$ -regular Jordan charge and $m₂$ is a Jordan charge vanishing on $P(S)$. A Jordan charge m is $P(S)$ regular iff m is of the form (6) for some Hermitian trace operator T on \overline{S} .

This result has a close connection with the decomposition of measures on quantum logics (Riittimann, 1990).

We recall that a charge m is strongly $P(S)$ -regular if, for every sequence ${Q_n}_n$ of mutually orthogonal elements of $K(S)$ such that $Q = \bigoplus_n Q_n$ exists in $K(S)$, there is a system of mutually compatible elements $\mathscr{B} \subset P(S)$ [i.e., $\mathscr B$ is a subset contained in a Boolean subalgebra of $K(S)$] such that, for each $\varepsilon > 0$ and every $R \in \{Q, Q_1^{\perp}, Q_2^{\perp}, ...\}$ there exists a $P \in \mathcal{B}$ with $P \subseteq R$ and $|m(R \cap P^{\perp})| < \varepsilon$. The strong $P(S)$ -regularity implies the $P(S)$ -regularity, but the converse is not true, in general.

Theorem 7 (Dvurečenskij et al., 1990; Dvurečenskij, 1990b). If dim S = \aleph_0 , *S* is complete iff *K(S)*, if *K* \in {*E, V, R*}, possesses at least one nonzero, strongly $P(S)$ -regular, finitely additive measure.

Problem 3. Does the strong $P(S)$ -regularity of a nonzero Jordan charge on $E(S)$, dim $S = N_0$, imply the completeness of S?

Theorem 8 (Dvurecenskij, n.d.). S is complete iff $F(S)$ *or* $W(S)$ possesses at least one nonzero $P(S)$ -regular Jordan charge.

We say that a subspace M_0 of *S*, $M_0 \in K(S)$, where $K \in \{F, W\}$, is a *support* of a finitely additive state m on $K(S)$ if $M(N) = 0$ iff $N \perp M_0$. If m has a support, then it is unique. The support of m is $P(S)$ -regular (with respect to m) if given $\varepsilon > 0$ there is a finite-dimensional subspace M of M_0 such that $m(M_0 \cap M^{\perp}) < \varepsilon$. For example, this is true if M_0 is of finite dimension.

Theorem 9. S is complete iff $K(S)$, where $K \in \{F, W\}$, possesses at least one finitely additive state with $P(S)$ -regular support. Moreover, this state is a completely additive state.

Proof. According to Dvurečenskij (1991), *m* is expressible in the form $m(M) = \text{tr}(TP^M) + m_2(M)$, $M \in F(S)$, where T is a positive Hermitian operator of trace class on \overline{S} , and m_2 is a positive function vanishing on $\overline{P}(S)$. Due to our assumptions, there is a sequence of nondecreasing subspaces of the support M_0 , $\{M_n\}$, such that $m(M_0) = \lim_n m(M_n)$. Therefore, $m(M_0^{\perp}) = 0 = m_2(M_0^{\perp})$ and

tr(TP ~o) + mE(Mo) = *m(Mo)* = lim *m(M~)* n = lira tr(*TP ~) +* lim *m(M~)* = lira tr(*TP ~")* n ~1 FI

which gives

$$
m(M) = tr(TP^M)
$$
 for any $M \in F(S)$

In other words, m is a $P(S)$ -regular state, so that, in view of the previous theorem. S is complete, and m is completely additive.

For $K = W$ we proceed in an analogous way to that in the previous paragraph. QED

Problem 4. Is the set of all (bounded) nonzero charges on *K(S),* where $K \in \{V, R, D, F, W\}$ for incomplete S, nonempty? What is its connection to the completeness of S?

Problem 5. If $K \in \{D, F, W\}$, dim $S \neq 2$, then (Dvurečenskij, 1990a) $K(S)$ does not possess any two-valued state. Is this true for $K \in \{E, V, R\}$?

Problem 6. Can any Jordan charge vanishing on $P(S)$ be extended to a Jordan charge on $L(\bar{S})$?

The notion of a finitely additive measure can be extended in a conventional way to a measure attaining the values $+\infty$, too. A finitely additive measure *m* on $E(S)$ is said to be $P(S)_{\infty}$ -regular if, given $M \in E(S)$, there is a nondecreasing sequence of finite-dimensional subspaces of M , $\{M_n\}$, such that $m(M) = \lim_{n \to \infty} m(M_n)$. For finite, finitely additive measures, $P(S)$ -regularity and $P(S)_{\infty}$ -regularity coincide.

Dvurečenskij (1992) describes the set of all $P(S)_{\infty}$ -regular, finitely additive measures (which are, for example, σ -finite, i.e., *m* is σ -finite if there

Completeness Criteria of Inner Product Spaces 1905

is a countable, orthogonal decomposition $\{M_n\}$ of splitting subspaces of S such that $\bigoplus_{n=1}^{\infty} M_n = S$ and $m(M_n) < \infty$ for any n) for the case that S is complete and dim $S \neq 2$.

Problem 7. Describe the set of all $(\sigma$ -finite) $P(S)_{\infty}$ -regular, finitely additive measures on $E(S)$ for incomplete S.

We review the following completeness criteria.

Theorem 10. Let S be an inner product space. The following statements are equivalent:

1. S is complete.

2. $E(S) = W(S)$ (Gudder, 1974).

3. F(S)= *W(S)* (Gudder, 1974).

4. If M is a proper closed subspaces of S, then $M^{\perp} \neq \{O\}$ (Gudder, 1974).

5. If f is a continuous linear functional on S, there exists $y \in S$ such that $f(x) = (x, y)$ for all $x \in S$ (Gudder, 1974).

6. Every MONS in S is an ONB in S (Gudder and Holland, 1975).

7. F(S) is orthomodular (Amemiya and Araki, 1966/1967).

8. E(S)=F(S).

9. E(S) is a complete lattice (Gross and Keller, 1977).

10. $E(S)$ is a σ -lattice (Cattaneo and Marino, 1986).

11. $E(S)$ is a σ -orthoposet (=quantum logic) (Dvurečenskij, 1988).

12. *E(S)* possesses the join of any sequence of mutually orthogonal one-dimensional subspaces of S (Dvurečenskij, 1988).

13. *R(S)=F(S)* (Cattaneo *et al.,* 1987).

14. *D(S)=E(S)* (Canetti and Marino, 1988).

15. $K(S)$, if $K \in \{C, E, V, R, D, F, W\}$, possesses at least one nonzero, completely additive signed measure (Dvurečenskij and Pulmannová, 1988, 1989).

16. S possesses at least one nonzero frame function (Dvurečenskij, 1989b, 1990a).

17. There exists a unit vector $y \in \overline{S}$ such that $y = \sum_i (y, x_i)x_i$ for any MONS $\{x_i\}$ in S (Dvurečenskij, 1989b, 1990a).

18. $F(S)$ [W(S)] possesses at least one Jordan $P(S)$ -regular, nonzero charge (Dvurečenskij, n.d.).

19. $K(S)$, where $K \in \{E, V, R\}$ and the dimension of S is a countable cardinal, possesses at least one nontrivial, strongly $P(S)$ -regular, finitely additive measure (Dvurečenskij et al., 1990; Dvurečenskij, 1990b).

20. $D(S)$, if S has dimension a nonmeasurable cardinal, possesses at least one nonzero, strongly $P(S)$ -regular, finitely additive measure (Dvure~enskij *et al.,* 1990).

21. $K(S)$, where $K \in \{D, F, W\}$ and the dimension of S is a nonmeasurable cardinal, possesses at least one σ -additive, nontrivial signed measure **(Dvure~enskij, 1989a, 1990a).**

22. $K(S)$, where $K \in \{F, W\}$, possesses at least one signed measure non**vanishing on** $P(S)$ **(Dvurečenskij, n.d.).**

23. $K(S)$, where $K \in \{F, W\}$ and S is Dacey, possesses at least one signed measure nonvanishing on $P(S)$ (Theorem 5).

24. $K(S)$, where $K \in \{F, W\}$, possesses at least one finitely additive state with a finite-dimensional support (Dvurečenskij, 1991).

25. $K(S)$, where $K \in \{F, W\}$, possesses at least one finitely additive state with a $P(S)$ -regular support (Theorem 9).

ACKNOWLEDGMENT

This paper was prepared with the support of the Alexander von Humboldt Foundation, Bonn.

REFERENCES

- Aarnes, J. F. (1970). Quasi-states on C*-algebras, *Transactions of the American Mathematical Society,* 149, 601-625.
- Amemiya, I., and Araki, H. (1966/1967). A remark on Piron's paper, *Publications RIMS Kyoto,* A2, 423-427.
- Canetti, A., Marino, G. (1988). Completeness and Dacey pre-Hilbert spaces, Preprint, Universitá della Calabria.
- Cattaneo, G., and Marino, G. (1986). Completeness of inner product spaces with respect to splitting subspaces, *Letters in Mathematical Physics,* 11, 15-20.
- Cattaneo, G., Franco, G., and Marino, G. (1987). Ordering on families of subspaces of pre-Hilbert space and Decay pre-Hilbert space, *Boll. Univ. Mat. ltal.* B, 1, 167-183.
- Dorofeev, S. V., and Sherstnev, A. N. (1990). Frame-type functions and their applications, *Izvestiya Vuzov Matematika,* 4, 23-29 [in Russian].
- Drisch, T. (1979). Generalization of Gleason's theorem, *International Journal of Theoretical Physics,* 18, 239-243.
- Dvure~enskij, A. (1978). Signed states on a logic, *Mathematica Slooaca, 28,* 33-40.
- Dvurečenskij, A. (1988). Completeness of inner product spaces and quantum logic of splitting subspaces, *Letters in Mathematical Physics,* 15, 231-235.
- Dvurečenskij, A. (1989a). States on families of subspaces of pre-Hilbert spaces, *Letters in Mathematical Physics,* 17, 19-24.
- Dvurečenskij, A. (1989b). Frame functions, signed measures and completeness of inner product spaces, *Acta Universitas Carolinae Mathematica et Physica, 30,* 41-49.
- Dvurečenskij, A. (1990a). Frame function and completeness, *Demonstratio Mathematica*, 23, 515-519.
- Dvurečenskij, A. (1990b). Regular, finitely additive states and completeness of inner product spaces, in *Proceedings of the Second Winter School on Measure Theory, Liptovsky Jfm,* 47-50.

Completeness Criteria of Inner Product Spaces 1907

- Dvurečenskij, A. (1991). Regular measures and completeness of inner product spaces, in Contributions to General Algebra, Vol. 7, Hölder-Pichler-Tempsky Verlag, Vienna, and B. G. Teubner Verlag, Stuttgart, 137-147.
- Dvurečenskij, A. (1992). Finitely additive Gleason measures, *Proceedings of the American Mathematical Society,* 115, 191-198.
- Dvurečenskij, A. (n.d.). Regular charges and completeness of inner product spaces, *Atti* Seminario Matematico e Fisico Universita degli Modena, to appear.
- Dvurečenskij, A., and Mišik, Jr., L. (1988). Gleason's theorem and completeness of inner product spaces, *International Journal of Physics,* 27, 417-426:
- Dvurečenskij, A., and Pulmannová, S. (1988). State on splitting subspaces and completeness of inner product spaces, *International Journal of Theoretical Physics,* 27, 1059-1067.
- Dvurečenskij, A., and Pulmannová, S. (1989). A signed measure completeness criterion, *Letters in Mathematical Physics,* 17, 253-261.
- Dvurečenskij, A., Neubrunn, T., and Pulmannová, S. (1990). Finitely additive states and completeness of inner product spaces, *Foundations of Physics,* 20, 1091-1102.
- Dvurečenskij, A., Neubrunn, T., and Pulmannová, S. (1992). Regular states and countable additivity on quantum logics, *Proceedings of the American Mathematical Society,* 114, 93!-938.
- Eilers, M., and Horst, E. (1975). The theorem of Gleason for nonseparable Hilbert space, *International Journal of Theoretical Physics,* 13, 419-424.
- Gleason, A. M. (1957). Measures on dosed subspaces of a Hilbert space, *Journal of Mathematics and Mechanics,* 6, 885-893.
- Gross, H., and Keller, A. (1977). On the definition of Hilbert space, *Manuscripta Mathematica,* 23, 67-90.
- Gudder, S. P. (1974). Inner product spaces, *American Mathematical Monthly,* 81, 29-36.
- Gudder, S. P. (1975). Correction to "Inner product spaces," American Mathematical Monthly, **82,** 251-252.
- Gudder, S. P., and Holland, Jr., S. (1975). Second correction to "Inner product spaces," *American Mathematical Monthly,* 82, 818.
- Hamhalter, J., and Pták, P. (1987). A completeness criterion for inner product spaces, *Bulletin of the London Mathematical Society,* 19, 259-263.
- Riittimann, G. T. (1990). Decomposition of cone of measures, *Atti Seminario Matematico e Fisico Universita Modena,* 37, 109-121.
- Sherstnev, A. N. (1974). On the charge notion in noncommutative scheme of measure theory, in: *Veroj. Metod i Kibern., Kazan,* No. 10-11, pp. 68-72 [in Russian].
- Varadarajan, V. S. (1968). *Geometry of Quantum Theory,* Van Nostrand, Princeton, New Jersey.